

Stefano Pignedoli , Laura Valli – Centro Ricerche Produzioni Animali - CRPA Spa

Martedì 19 novembre 2019 – Ore 14:00

Sala convegni del Tecnopolo di Reggio Emilia - Piazzale Europa, 1

Sistemi analizzati nel triennio 2016-2019

Senape – Facelia

美

Loiessa – Trifogli

Segale

• Leguminose (medica)

Test

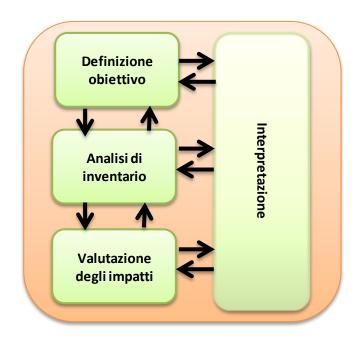
Impronta di carbonio

Rappresenta l'emissione di gas clima-alteranti; in agricoltura principalmente:

CO₂ anidride carbonica (F.E.=1 CO_2 eq)

CH₄ metano (F.E.=28 CO_2 eq)

N2O protossido di azoto (F.E.=265 CO₂eq)



Metodologia LCA



Le fasi emissive

Emissioni concimi

Emissioni dirette	Nitrato di calcio	Fosfato biammonico
Quantità fertilizzante applicato (kg/ha)	161.00	350.00
Tenore N fertilizzante (%)	12%	15%
Fertilizzante applicato (kgN/ha)	19	53
FE IPCC dirette (kgN-N2O/kgN appl)	0.01	0.01
fattore GWP	265	265
Emissioni diretteN- N2O (kg N-N2O/ha)	0.19	0.53
Emissioni dirette N2O (kg N2O/ha)	0.30	0.83
Dirette (kg CO2eq/ha)	79.5	218.6
Emissioni indirette		
Fertilizzante applicato (kgN/ha)	19	53
fracGASF (kgNH3/kgNappl)	0.014	0.067
Emissioni N-NH3 (kgN-NH3/ha)	0.220	2.897
EF4 IPCC (kg N-N2O/kgN appl)	0.010	0.010
Emissioni N-N2O (kg N-N2O/ha)	0.00	0.03
Emissioni N2O indirette da		
volatilizzazione (kg N2O/ha)	0.003	0.046
Indirette da volatilizzazione (kg CO2eq/ha)	0.9	12.1
fracLAECH (kgN-NO3/kgN appl)	0.24	0.24
Leaching (kg di N-NO3/ha)	4.582704	12.6
Emissioni da leaching (kg di NO3/ha)	20.3	55.8
EF5 IPCC (kg N-N2O/kgN-NO3)	0.011	0.011
Emissioni N2O indirette da		
percolazione (kg N2O/ha)	0.079	0.218
Indirette da percolazione (kg CO2eq/ha)	21.0	57.7

0.38

101

1.09

288

Totale N2O (kg N2O/ha)

Totale kg CO2eq/ha

A cosa è riferito il calcolo

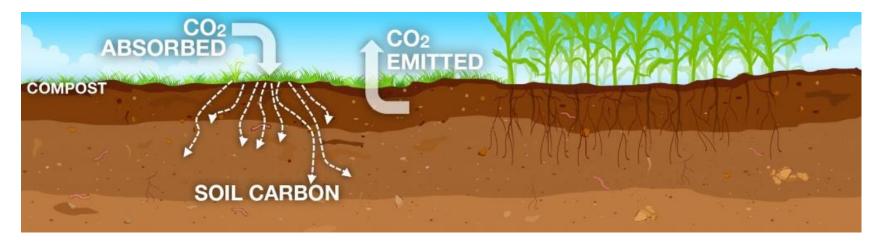
Unità funzionale:

Superficie: Kg CO₂eq/ha

Resa: kg CO₂eq/kg prodotto

Rese del triennio

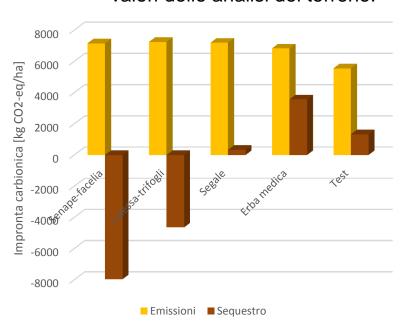
Tesi cover	Totale	MAIS 2017	SOIA 2018	MAIS 2019	
		(t/ha al 14%UR)	(t/ha al 14%UR)	(t/ha al 14%UR)	
Senape-facelia	21,27	8,74	2,21	10,32	
Loiessa-trifogli	21,54	8,38	2,33	10,83	
Segale	23,30	10,40	2,02	10,88	
Erba medica	22,59	9,64	2,95	10,00	
Test	24,43	10,43	2,99	11,01	

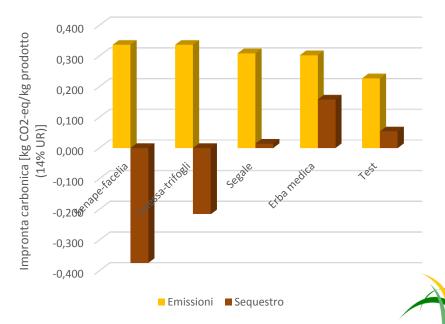


Sequestro carbonio

La riduzione delle lavorazioni (semina diretta) e la prolungata copertura vegetale del terreno (cover crops) ritardano il tempo di mineralizzazione della sostanza organica. Questi effetti sono dovuti all'azione protettiva degli aggregati del terreno che non vengono più distrutti dalle lavorazioni, né esposti alla pioggia quando il terreno è nudo.

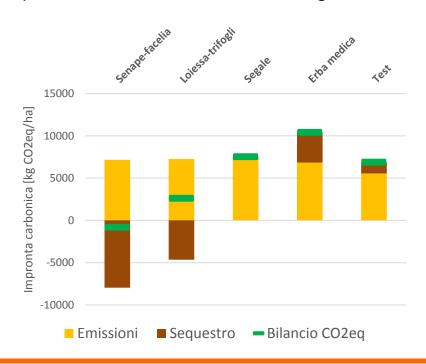
Sequestro carbonio

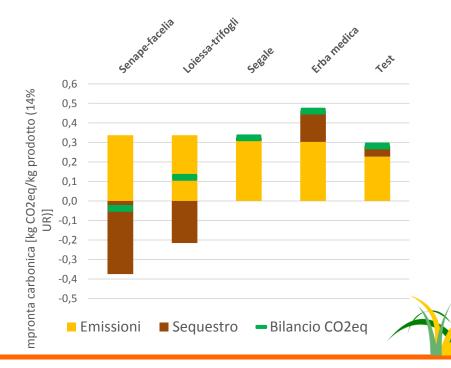

Tenore Sostanza Organica del terreno, 0-30 cm (%)	2016	2019	Δ
senape-facelia	1,85	1,95	0,10
loiessa-trifogli	1,79	1,84	0,06
segale	1,96	1,96	0,00
leguminose (ex erba medica)	1,97	1,93	-0,04
test senza cover	1,86	1,85	-0,02



Risultati in kg CO₂eq/kg di prodotto:

Impronta di carbonio bilanciata con gli effetti del sequestro calcolato con i valori delle analisi del terreno.





Risultati in kg CO₂eq/kg di prodotto:

Impronta di carbonio bilanciata con gli effetti del sequestro calcolato con i valori delle analisi del terreno

Convegno finale – Reggio Emilia, 19 novembre 2019

Conclusioni

- Considerando le sole emissioni di gas serra l'impronta carbonica risulta inferiore per la tesi di controllo (senza cover crops) a causa delle minori operazioni colturali a fronte di rese produttive superiori
- Alcune delle tesi con cover crops, pur nel limitato periodo della sperimentazione, hanno fatto registrare un incremento del tenore di sostanza organica del suolo, mentre la tesi di controllo mostra un decremento
- Il contributo del carbonio sequestrato nel suolo, tradotto in CO₂equivalente, è stato in grado in alcuni casi di ridurre la impronta carbonica
 delle colture, fino a rendere le produzioni carbon-negative

Grazie per l'attenzione!

http://cover.crpa.it - cover@crpa.it

